BIOCONSERVACION S.A.U.– C/ Vapor 12. P.I. El Regàs 08850 Gavà (Barcelona), Spain

Tel: +34 93 662 32 54 | info@bioconservacion.com

Efficient H2S

Removal in Biogas

Save on yearly media expenses

2022-12-15 15:43:38

The cost of removing H2S from biogas involves much more than just the cost of the media itself.Using a media with a higher absorption capacity result in fewer media replacements, which means savings in the total quantity of media consumed, fewer media replacements, and lower yearly disposal costs.

With BION CARB BG, Relative Humidity Will no Longer be a Problem.

 

Relative humidity in biogas installations can vary substantially depending on plant conditions. BION CARB BG catalytic carbon is designed to work under optimal conditions with relative humidities between 30% and 95%, making it a very versatile product.

 

Lower Cost per kg of H2S Removed

H2S is a corrosive gas that causes major damage to equipment. BION CARB BG has an H2S elimination capacity of up to 50% by weight, which makes it highly cost-effective compared to other alternatives on the market.

 

High Absorption Capacity

Working with a product that has up to 50% absorption capacity is synonymous to significant improvements in OPEX since the costs associated with the replacement of the average are lowered, such as:
- Operator cost
- Replacement cost
- Disposal cost
- Inert gas consumption
- Cost of plant shutdowns in case of a single vessel

In our blog...

Protect your biogas installations and reduce the maintenance costs

The conversion of biogas into green energy is not only environmentally friendly, but also contributes to the optimization of natural resources. More and more industries have biogas stations to take advantage of waste generated in these facilities, contributing to generate a circular economy where all available resources are exploited.   Biogas plants need to remove impurities before it is diverted to its final use (upgrading or cogeneration engines). In the case of upgrading, the need for purification is high due to the strict conditions required for methane purity.   The BION media ensures an effective removal of impurities at 99.5% efficiency.   BION medias: Protect and maintain the compressor by preventing the occurrence of corrosive atmosphere inside the compressor. Protect the membranes against fouling or pore blockage. Have very high adsorption capacity They are specially designed to give high performance in environments with low oxygen levels. Protect and maintain the installations   This becomes to reduced operating and maintenance costs and increased sorbent or adsorbent lifetime.   BION biogas purification solutions are the best return on investment because they They remove pollutant gases before they cause irreversible damage to membranes, compressors or cogeneration equipment. Enables compliance with biomethane grid injection input requirements Extends the lifetime of the pretreatment stage by reducing operating costs Avoid downtime by preventing costly unexpected repairs Eliminate ALL common contaminants other than H2S.

READ MORE »

Ethylene & banana

Banana is a climacteric fruit that increases its respiration and produces a lot of ethylene during its postharvest phase. They are usually harvested at a stage prior to ripening for transport and then artificially ripened in ethylene chambers. Banana quality can be seriously affected if bananas produce moderate amounts of ethylene during transport. Ethylene affects bananas in ways that: It accelerates ripening and over-ripening. Softening and causing loss of firmness. Alters the color of bananas causing yellowing. It suffers a higher incidence of rots and microbial infections such as: Calletotrichum Musae, Botrytis Cinerea or Lasiodiplodia Theobromae. Lower lot homogeneity after artificial ripening. To avoid wastage, measures must be taken to ensure that green bananas are not exposed to ethylene until artificial ripening is required. The most common diseases due to the effect of ethylene are obvious to the naked eye. Anthracnose, caused by Colletotrichum Musae, is a typical post-harvest disease that is evident on ripe bananas, showing wounds and skin openings. The removal of ethylene during transport delays the development of anthracnose after artificial ripening.     In the case of the banana crown, it is common to see its rotting or degradation during postharvest. Crown rot is usually caused by Lasiodiplodia Theobromae, among other fungi, showing dehydration and blackening during ripening. This is activated by ethylene creating a degradation of the skin that invades the whole fruit.     To avoid uncontrolled ripening, it is necessary to eliminate ethylene and prevent fungi from proliferating. BION's Transprotekt filters and Ethyl Stopper sachets have an antimicrobial action that extends the shelf life of bananas while removing ethylene from the environment thanks to the action of potassium permanganate.   The use of Transprotekt filters and Ethyl Stopper sachets: Increases the shelf life of the product Reduces waste due to over-ripening or spoilage Maintains batch homogeneity after artificial maturation Eliminates odors in cold stores Avoids complaints, returns, renegotiations from customers Allows to benefit from price fluctuations Harmless to workers, bananas and the environment Maintains the color of the banana Easy to handle and inexpensive Compatible for use in organic products

READ MORE »

Reduce Energy Costs in your Air Filtration System

Rising energy costs force us to think of new ways to reduce our energy consumption in air filtration and air conditioning installations, in addition to the need to reduce CO2 emissions. When renovating and designing new ventilation and air filtration systems, it is essential to apply energy-saving solutions without sacrificing performance. Many factors affect energy consumption, the most commonly known are fan operation, cooling/heating of HVAC system and % of renewed air, particulate filter type and maintenance, and molecular filter choice including pellet shape and size which also have a significant impact on energy costs.   The importance of the blower operation The cost associated with the blower will depend directly on the operating time, and the consumption, which in turn will depend on the power and efficiency of the blower, the airflow to be treated, and the pressure drop. Two parameters can be adjusted from this equation, the airflow to be treated and the pressure drop. Air conditioning conditions are crucial Air conditioning costs and filtered airflow can be optimized by adjusting the ratios of mixing outside and recirculated air. For this, it will be necessary to consider both indoor and outdoor air quality and pollutants, indoor and outdoor temperature difference, and the humidity of the external air to be filtered. Air conditioning costs and filtered airflow can be optimized by adjusting the ratios of added outside air and recirculated inside air. For this, the quality, temperature and humidity of the outside air to be filtered and the interior air's quality must be considered. How to reduce energy costs by achieving the right pressure drop When renovating and designing ventilation and air filtration systems, it is critical to find solutions that allow us to reduce energy consumption and its associated cost. One of the most important parameters to reduce energy costs is achieving the right pressure drop. Pressure drop can be reduced through the correct selection of equipment, filter media and particle filters. Right filters and media can help reduce more than 10 % of consumption The selection of filter media must be adequate for the elimination of polluting gases in the atmosphere, however, the selection of a media in the form of pellets instead of spheres will considerably reduce the pressure drop (between 10 and 20% for passage speed between 0,5 y 2,5 m/s), reducing the costs associated with the power of the blower. The kWh used by the blower is directly proportional to the pressure drop, meaning that the kWh and their cost will be also reduced by more than 10%. The design of the equipment must be according to the room conditions. Equipment selection is another important parameter to consider. The design of the equipment and the type of media to be used must be specific for each case, depending on the parameters to be considered and the room conditions. However, in general terms, it can be concluded that equipment with bulk media will generally have a higher pressure drop for a standard passage speed of 0.5 m/s, compared to equipment with modules with filter media in its structure. Bulk media equipment typically has a higher bed height. Instead, modules containing thin layers of media can be used inside side access unit-type equipment with a lower pressure drop at the standard velocity of between 1.27 to 2.54 m/s.   Save up to 30% of energy costs by optimizing equipment design and selecting the right filtration media. The decrease in pressure drop by optimizing the equipment design and correctly selecting the filtration media can be up to 30 %. This means that lower power will be needed, decreasing the initial cost of the blower. Moreover, having this decrease in pressure drop translates into a decrease in the yearly operation cost due to a lower energy consumption of the blower of over 25 %.

READ MORE »